

SYSTEM AND PROCESS ASSESSMENT RESEARCH LABORATORY SPAR Laboratory Civil, Architectural and Environmental Engineering • 103/104-E Butler-Carlton Hall

SMART ROCK TECHNOLOGY FOR REAL-TIME MONITORING OF BRIDGE SCOUR AND RIPRAP EFFECTIVENESS – GUIDELINES AND VISUALIZATION TOOLS

Genda Chen, P.E., Ph.D., F.ASCE, F.SEI Professor and Robert W. Abbett Distinguished Chair in Civil Engineering Director, System and Process Assessment Research Laboratory (SPAR Lab) Associate Director, Mid-America Transportation Center (MATC) Missouri University of Science and Technology (Missouri S&T) <u>Http://web.mst.edu/~gchen; gchen@mst.edu</u>

3rd Technical Advisory Council Meeting on April 1, 2016

OUTLINE OF THIS PRESENTATION

- The Smart Rock Monitoring Concept
- Design and Prototyping
- Localization and Effectiveness
- Field Test Demonstration
- Concluding Remarks

THE SMART ROCK MONITORING CONCEPT

Two Application Scenarios

- Scour Depth
 - Deposits at a bridge pier or abutment are washed away to form a scour hole with unknown location and depth.

Countermeasure Effectiveness

 Move of rocks leads to the loss of a rip-rap countermeasure for bridge scour protection.

• Arbitrarily Oriented System (AOS)

- ✓ Monitored along the river bank or on the bridge deck
- ✓ Most complicated in smart rock localization

AOS Model of Smart Rocks

Automatically Pointing-South System (APSS)

- ✓ Monitored along the river bank
- ✓ Measurement station located in South or North pole of the magnet
- ✓ Rapid convergence and high accuracy of APSS location
- ✓ However, easily affected by ferromagnetic substances

(a) Schematic View

(b) Prototype Smart Rock **APSS Model of Smart Rocks**

SYSTEM AND PROCESS ASSESSMENT RESEARCH LABORATORY SPAR Lab

Automatically Pointing-Up System (APUS)

- ✓ Automatically Pointing to Upward System (APUS)
- ✓ Measurement apparatus set on the bridge deck
- ✓ Gravity-orientated direction, reduces the degree of freedom, less effect by ferromagnetic substance

(b) Prototype Smart Rock

System and Process Assessment Research Laboratory

6

Concrete Encasement and Fabrication

- 36.83-cm-diameter mold with a concrete density of 1495 kg/m³
- Fabrication process

One N45 Magnet

1. Mix fiber concrete

2. Place APUS inside a mold

3. Fill the mold with concrete

4. Cure the concrete in water for 14 days

SYSTEM AND PROCESS ASSESSMENT RESEARCH LABORATORY SPAR Lab

Ambient Magnetic Field at Q Station in Absolute XYZ Coordinate System

- ✓ Ambient Ferromagnetic Substances
- ✓ B_A, Ambient Magnetic Field Vector
 at a Measurement station, Q (X,Y,Z)
- ✓ Three components of B_A :

$$B_{XA} = B_A \cos \theta \cos \varphi$$

$$B_{YA} = B_A \cos \theta \sin \varphi$$

 $B_{ZA} = B_A \sin \theta$

✓ B_A, measured by magnetometer
 ✓ θ (0, π) and φ θ (0, 2π) measured
 by an orientation device

Total Magnetic Field at Q Station in Absolute XYZ Coordinate System

Localization Algorithm

- Unknown Orientation

 \checkmark SRSS error between predicted intensity $B_i^{(P)}$ and the measured intensity $B_i^{(M)}$,

$$J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma) = \sqrt{\sum_{i=1}^{n} [B_{i}^{(P)} - B_{i}^{(M)}]^{2}}$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial X_{M}} = 0 \qquad \qquad \frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial Y_{M}} = 0$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial Z_{M}} = 0 \qquad \qquad \frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial \alpha} = 0$$

$$\frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial \beta} = 0 \qquad \qquad \frac{\partial J(X_{M}, Y_{M}, Z_{M}, \alpha, \beta, \gamma)}{\partial \gamma} = 0$$

- Known Orientation (α =0, β =0, and γ =0)

$$J(X_M, Y_M, Z_M) = \sqrt{\sum_{i=1}^n [B_i^{(P)} - B_i^{(M)}]^2}$$
$$\frac{\partial J(X_M, Y_M, Z_M)}{\partial Y_M} = 0 \qquad \frac{\partial J(X_M, Y_M, Z_M)}{\partial Z_M} = 0 \qquad \frac{\partial J(X_M, Y_M, Z_M)}{\partial X_M} = 0$$

Experimental Validation Procedure

- Before a smart rock is deployed, the ambient magnetic field of the Earth and environmental effects was evaluated at each measurement point either by a scalar magnetometer and an orientation device or by a threecomponent magnetometer.
- After the smart rock is deployed, the total magnetic field of the magnet and the ambient field was measured with the same magnetometer at various points around the smart rock.
- The coordinates of measurement points were surveyed by a total station – a survey instrument.
- The intensity and coordinate measurements at six or more stations allowed the determination of the smart rock's location.

Y(S)

X(W)

Experimental Validation

- Test Setup
 - ✓ A scour experienced pier
 - ✓ Three Locations M1, M2, and M3 for AOS and APSS
 - ✓ Total 34 measurement points
 - ✓ Total Station at Point B to survey coordinates of three smart rocks' locations and 34 sensor positions
 - MFDD was set at the 34 points to measure the angles of θ and φ

• Experimental Validation

- Test Results (M3_{APSS})

Location of Sensor Head	X(m)	Y(m)	Z(m)	$B_{i}^{(M)}(nT)$	
Р9	10.940	-2.065	-0.657	52766	
P11	11.991	-3.082	-0.558	52422	
P12	10.670	-3.162	-0.670	55203	
P20	9.822	-2.717	-0.635	55164	
P21	9.413	-3.877	-0.748	63734	
P23	8.313	-4.215	-0.501	59204	
P25	7.750	-4.591	-0.858	58350	
P26	7.315	-4.055	-0.726	56087	
P27	8.043	-3.046	-0.553	55198	
Predicted APSS Location M3 _{APSS}	9.527	-5.520	-1.850		
Measured APSS Location M3 _{APSS}	9.576	-5.584	-1.822	N/A	
Location Prediction Error for M3 _{APSS}	-0.049	0.064	-0.028		
SRSS Error in Coordinate	0.085m				

Experimental Validation

- Test Results (M3_{AOS})

Location of Sensor Head	X(m)	Y(m)	Z(m)	B _i ^(M) (nT)
Р9	10.940	-2.065	-0.667	52651
P12	10.670	-3.162	-0.680	54660
P13	12.031	-4.399	-0.745	52095
P20	9.822	-2.717	-0.645	54929
P21	9.413	-3.877	-0.758	62508
P23	8.313	-4.215	-0.511	59364
P25	7.750	-4.591	-0.868	59523
P26	7.315	-4.055	-0.736	56642
P27	8.043	-3.046	-0.563	55399
Predicted AOS Location M3 _{AOS}	9.514	-5.519	-1.860	
Measured AOS Location M3 _{AOS}	9.576	-5.584	-1.837	N/A
Location Prediction Error for M3 _{AOS}	-0.062	0.065	-0.023	
SRSS Error in Coordinate	0.093m			

• Test "Crane" Design

- Lightweight, easy installation, rapid assembling, and cost effectiveness
- Minimal wind-induced disturbance
- Non-magnetic materials in proximity to the sensor

• Test "Crane" Prototype/Product

• Three-axis Flux Digital Magnetometer (STL)

- Manufactured by Systemtechnic Ludwig GmBH, Konstanz, Germany
- STL DM050: measure X-, Y- and Z- component and total field
- 50 meters Coax cable for power and data transmission
- Interface : Coax Ethernet Hub for connection of up to 3 magnetometers
- STL GradMag software installed in a Notebook for full controlling of measurement, data acquisition and viewer
- Field range: ±1,000,000nT
- Resolution: 0.002nT
- Maximum sample rate: 1

Notebook

• HWY1 Waddell Creek Bridge, CA

- Setup and Layout on Bridge Deck
- Test Procedure
 - Set a Cartesian Coordinate System
 - Ambient Magnetic Field Measurement
 - Deployment of Smart Rocks
 - Measurement of the Total Magnetic Field
- Results from Bridge Deck Measurements

Measurement Station Layout on Bridge Deck

20

Test Set up and Layout

- Measurement Points Layout on the Bridge Deck

Test Procedure

- Set a Cartesian coordinate system O-XY
 - ✓ Point A- Permanent Benchmark
 - ✓ Total station at Point A to set coordinate system as A-xy
 - ✓ Survey Point B and O under
 A-xy coordinate system
 - Set up total station at Point O to determine the final coordinate O-XY

23

Test Procedure

- Measure the Ambient Magnetic Field
 - ✓ Magnetic field from Earth and ambient ferromagnetic constructions
 - ✓ Conduct before deployment of the smart rock
 - ✓ Abutment 1 Measurement: Y1, Y2, Y3 along Y axis, X1, X2, X3, X4 along X axis, and Z1,Z2, ..., Z7 along Z axis, total 84 points.
 - ✓ Bent 2 Measurement: Y1, Y3, Y5 along Y axis, X1, X2, X3, X4 along X axis, and Z1,Z2, ..., Z7 along Z axis, total 84 points.
 - ✓ Measurement points sequence:

Test Procedure

SPAR Lab

- Deploy Three Smart Rocks

- ✓ Smart Rock 1 (SR1) & Smart Rock 2 (SR2) around Bent 2
- ✓ Smart Rock 3 (SR3) around Abutment 1

• Test Procedure

– Deploy Three Smart Rocks

Test Procedure

Measure the Total Magnetic Field Intensity

- ✓ Magnetic field from both smart rock and AMF.
- ✓ Abutment 1 Measurement: Y1, Y2, Y3 along Y axis, X1, X2, X3, X4 along X axis, and Z1,Z2, ..., Z6 along Z axis, total 72 points.
- ✓ Bent 2 Measurement: Y1, Y3, Y5 along Y axis, X1, X2, X3, X4 along X axis, and Z1,Z2, ..., Z7 along Z axis, total 84 points.
- ✓ Measurement points sequence same as that of AMF.

SYSTEM AND PROCESS ASSESSMENT RESEARCH LABORATORY SPAR Lab

Test Results

 Coordinates and Intensities at Measurement Points around Abutment 1

		Meas	surement P pordinate (1	Points m)	N42 Magnet Factor (nT.m ³)	AMF Intensity (nT)		SR3 & AMF Intensity (nT)					
		Xi	Yi	Zi	K	B _{XA}	B _{YA}	BZA	BA	B _X	B _Y	Bz	В
	Z1	0.656	42.259	-0.942	86521	-18675	-9823	-40007	45230	-17485	-6252	-41897	45828
Y1X2				•••					•••	•••			•••
	Z6	0.768	42.345	0.573	86521	-18661	-9888	-40226	45433	-19943	-7237	-40802	45988
	Z1	1.693	42.293	-1.141	86521	-18243	-9707	-39974	45000	-13343	-8111	-48963	51393
Y1X3										•••	•••		
	Z6	1.736	42.275	0.366	86521	-18878	-9675	-40509	45727	-19475	-7190	-42452	47256
	Z1	2.341	42.387	-1.085	86521	-16406	-10804	-40258	44795	-13358	-11669	-54780	57580
Y1X4										•••	•••		
	Z6	2.444	42.329	0.319	86521	-17707	-10784	-41228	46147	-18941	-7994	-44345	48879
Y2X2										•••			
Y2X3										•••			
Y2X4										•••	•••		
Y3X2										•••			
Y3X3										•••			
Y3X4										•••			

• Test Results

Localization of SR3

Point Name		Measurement Points Coordinate (m)			N42 Magnet Factor (nT.m ³)	AMF Intensity (nT)			SR3 & AMF Intensity (nT)
		Xi	Yi	Zi	K	B _{XA}	BYA	BZA	В
	Z1	0.656	42.259	-0.942	86521	-18675	-9823	-40007	45828
Y1X2	•••	•••		•••					•••
	Z6	0.768	42.345	0.573	86521	-18661	-9888	-40226	45988
	Z1	1.693	42.293	-1.141	86521	-18243	-9707	-39974	51393
Y1X3	•••	•••							•••
	Z6	1.736	42.275	0.366	86521	-18878	-9675	-40509	47256
	Z1	2.341	42.387	-1.085	86521	-16406	-10804	-40258	57580
Y1X4	•••	•••							•••
	Z6	2.444	42.329	0.319	86521	-17707	-10784	-41228	48879
	•••	•••							•••
Predicted SR3 Location	2.789	41.302	-2.823						
Measured SR3 Location	2.714	41.104	-2.527						
Location Prediction Error fo	r SR3	0.075	0.198	-0.296	5 NA				
SRSS Error in Coordina	te		0.364		7				

I-44 Roubidoux Ceek Bridge, MO (Bent 7 downstream)

Measurement Station Layout on Bridge Deck

Test Setup and Layout

• Test Set up and Layout

- Measurement Points Layout on the Bridge Deck

Test Procedure

- Set a Cartesian coordinate system O-XY

Test Procedure

- Ambient Magnetic Field Measurement
 - ✓ Magnetic field from Earth and ambient ferromagnetic constructions
 - ✓ Conduct before deployment of the smart rock
 - ✓ Bent 7 Measurement: Y1, Y2, Y3 along Y axis, X1, X2 along X axis, and Z1,Z2, ..., Z7 along Z axis, total 42 points.
 - ✓ Measurement points sequence:

Test Procedure

Deployment of Smart Rocks

✓ Smart Rock 1(SR1) around Bent 7

Test Procedure

- Measure the Total Magnetic Field Intensity
 - ✓ Magnetic field from both smart rock and AMF.
 - ✓ Bent 7 Measurement: Y1, Y2, Y3 along Y axis, X1, X2, along X axis, and Z1,Z2, ..., Z7 along Z axis, total 42 points.
 - ✓ Measurement points sequence same as that of AMF.

Test Results

 Coordinates and Intensities at Measurement Points around Bent 7

		Measurement Points Coordinate (m)		N42 Magnet Factor (nT.m ³)	AMF Intensity (nT)			SR3 & AMF Intensity (nT)					
		Xi	Yi	Zi	K	B _{XA}	B _{YA}	BZA	BA	B _X	BY	Bz	В
	Z1	3.854	21.793	-1.002	86521	22781	1016	-48909	53964	21379	-827	-48734	53224
Y1X1						•••				•••			•••
	Z7	3.834	21.554	0.795	86521	22631	2399	-48778	53826	22073	253	-48957	53703
	Z1	2.068	21.869	-0.993	86521	22776	1666	-48933	53999	18988	6554	-49341	53274
Y1X2	•••	•••	•••		•••	•••		•••		•••			•••
	Z7	2.083	21.606	0.781	86521	22496	3237	-49477	54447	21054	7653	-50118	54896
Y2X1										•••			•••
Y2X2										•••			•••
Y3X1										•••			•••
Y3X2	•••	•••	•••	•••	•••	•••	•••	•••		•••	•••		•••

• Test Results

Localization of SR1

	X _M /m	Y _M /m	Z _M /m
Predicted SR1 Location	0.063	23.491	-3.032
Measured SR1 Location	0.089	23.235	-3.042
Location Prediction Error for SR1	0.026	0.256	-0.010
SRSS Error in Coordinate		0.258m	

• US63 Gasconade River Bridge, MO (Bent 4 upstream)

Measurement Station Layout on Bridge Deck

• Test Setup and Layout

• Test Set up and Layout

- Measurement Points Layout on the Bridge Deck

Test Procedure

- Set a Cartesian coordinate system O-XY

SYSTEM AND PROCESS ASSESSMENT RESEARCH LABORATORY SPAR Lab

Test Procedure

- Ambient Magnetic Field Measurement
 - ✓ Magnetic field from Earth and ambient ferromagnetic constructions
 - ✓ Conduct before deployment of the smart rock
 - ✓ Bent 4 Measurement: Y1, Y2, Y3 along Y axis, X1, X2 along X axis, and Z1,Z2, ..., Z7 along Z axis, total 42 points.
 - ✓ Measurement points sequence:

Test Procedure

- Deployment of Smart Rocks

✓ Smart Rock 1(SR1) around Bent 4

Test Procedure

- Measure the Total Magnetic Field Intensity
 - ✓ Magnetic field from both smart rock and AMF.
 - ✓ Bent 7 Measurement: Y1, Y2, Y3 along Y axis, X1, X2, along X axis, and Z1,Z2, ..., Z7 along Z axis, total 42 points.
 - ✓ Measurement points sequence same as that of AMF.

Test Results

 Coordinates and Intensities at Measurement Points around Bent 7

		Measurement Points Coordinate (m)			Measurement Points Coordinate (m) (m) (m45) Factor (nT.m ³)			N45 Magnet Factor (nT.m ³)		AMF Intensity (nT)				SR3 & AMF Intensity (nT)			
		Xi	Yi	Zi	K	B _{XA}	BYA	BZA	BA	B _X	BY	Bz	В				
	Z1	2.931	63.700	-11.014	101770	-16429	-6508	-47393	50580	-15752	-5836	-47896	50756				
Y1X1	•••					•••		•••		•••			•••				
	Z7	3.016	63.526	-9.198	101770	-16125	-5723	-47231	50235	-15817	-5403	-47516	50370				
	Z1	2.949	68.191	-10.988	101770	-17208	-7072	-46566	50145	-16512	-7637	-46998	50397				
Y1X2	•••	•••			•••	•••		•••	•••	•••	•••	•••	•••				
	Z7	2.895	67.757	-9.221	101770	-17613	-6984	-46113	49854	-17124	-5446	-46719	50056				
Y2X1	•••	•••			•••	•••		•••	•••	•••	•••	•••	•••				
Y2X2	•••	•••			•••	•••		•••	•••	•••	•••	•••	•••				
Y3X1	•••	•••			•••	•••		•••	•••	•••	•••		•••				
Y3X2	•••							•••					•••				

Test Results

- Localization of SR1
- The ground truth of the coordinate is SR1 was not measured due to the fast water current.
- The predicted location is reasonable according to the relative position to the measurement points.

	X _M /m	Y _M /m	Z _M /m
Predicted SR1 Location	0.460	68.168	-17.002

CONCLUDING REMARKS

- The APUS smart rocks have been deployed at three sites of the Waddell Creek Bridge, CA, the Roubidoux Creek Bridge, MO, and the Gasconade River Bridge, MO.
- The AOS, APSS, and APUS smart rock localization algorithms without and with knowing the magnet polarization in *a priori* have been validated at the three sites, all giving satisfactory results (<< 0.5 m).
- The test crane can be set on a trailer and moved as needed in application.

ACKNOWLEDGEMENTS

- Financial support for this study was provided by the U.S. Department of Transportation Office of the Assistant Secretary for Research and Technology (USDOT/OST-R) under Cooperative Agreement No. OASRTRS-14-H-MST and by Missouri Department of Transportation (in-kind). The views, opinions, findings and conclusions reflected in this presentation are the responsibility of the presenter only and do not represent the official policy or position of the USDOT/OST-R or any State or other entity.
- Thanks are due to California and Missouri Departments of Transportation for their assistance in traffic control during field tests.
- Thanks are also due to graduate students (Yan Tang, Zhaochao Li, Yizheng Chen, Steve Guo, Fan Liang), senior specialist (Jason Cox), and engineering technicians (John Bullock, Greg Leckrone, Gary Abbott, and Brian Swift).

